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Abstract
We prove that if (M,X ) and (M,Y) are countable models of the theory

WKL∗
0 such that IΣ1(A) fails for some A ∈ X∩Y, then (M,X ) and (M,Y)

are isomorphic. As a consequence, the analytic hierarchy collapses to ∆1
1

provably in WKL∗
0 + ¬IΣ0

1, and WKL is the strongest Π1
2 statement that

is Π1
1-conservative over RCA∗

0 + ¬IΣ0
1.

Applying our results to the ∆0
n-definable sets in models of RCA∗

0 +
BΣ0

n+¬IΣ0
n that also satisfy an appropriate relativization of Weak König’s

Lemma, we prove that for each n > 1, the set of Π1
2 sentences that are

Π1
1-conservative over RCA∗

0 + BΣ0
n + ¬IΣ0

n is c.e. In contrast, we prove
that the set of Π1

2 sentences that are Π1
1-conservative over RCA∗

0 + BΣ0
n

is Π2-complete. This answers a question of Towsner.
We also show that RCA0 + RT2

2 is Π1
1-conservative over BΣ0

2 if and
only if it is conservative over BΣ0

2 with respect to ∀Π0
5 sentences.
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In this paper, we investigate a new model-theoretic argument that can be
used to study some fragments of second-order arithmetic. It is a cliché that clas-
sical model-theoretic techniques are of limited use in understanding models of
arithmetic, and in particular it is well-known that commonly studied theories of
arithmetic do not have nice model-theoretic properties such as model complete-
ness and quantifier elimination. Nevertheless, we use an automorphism-based
argument to obtain a kind of model completeness result for a specific fragment of
second-order arithmetic with (partially) negated induction. This result can be
applied to obtain new information both about general properties of some theo-
ries of second-order arithmetic, including true ones, and about specific principles
considered in reverse mathematics.
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The main theorem of the paper concerns the axiomatic theory known as
WKL∗

0. This is a fragment of second-order arithmetic consisting of the theory
RCA∗

0 – that is, ∆0
1-comprehension, ∆0

1-induction, and the totality of expo-
nentiation – and the additional axiom WKL expressing a compactness principle
called Weak König’s Lemma, which says that any infinite 0–1 tree has an infinite
path. Compared to the usual base theory considered in reverse mathematics,
RCA0, the system WKL∗

0 is proof-theoretically much weaker, as a result of not
requiring induction for Σ0

1 properties. On the other hand, WKL∗
0 goes beyond

RCA0 in that WKL implies the existence of noncomputable sets.
It is known that in some important respects WKL∗

0 behaves similarly to its
stronger cousin WKL0 := RCA0 + WKL. For example, it was shown in the
seminal paper [39] that WKL∗

0 is Π1
1-conservative over RCA∗

0. This is analo-
gous, and can be proved analogously, to the well-known theorem that WKL
is Π1

1-conservative over RCA0. A more recent observation [10] is that WKL∗
0,

like WKL0, implies the completeness theorem for first-order logic; moreover, it
also implies some watered down versions of completeness tailored to cut-free
consistency,

which are often helpful as WKL∗
0 does not imply cut elimination for first-

order logic. This makes it possible to discover numerous connections between
the model theory of WKL∗

0 and that of first-order arithmetic.
Here, we prove a result that applies specifically to models of WKL∗

0 without
Σ0

1-induction and has no apparent analogue for WKL0. It can be seen as an
extension to the second-order setting of some earlier results to the effect that
countable models satisfying Σn-collection (and exp) but not Σn-induction have
(in fact, many) nontrivial automorphisms.

Theorem 2.1 (abbreviated version). Let (M,X ) and (M,Y) be countable
models of WKL∗

0 such that (M,X ∩ Y) |= ¬IΣ0
1. Then (M,X ) and (M,Y) are

isomorphic.

One possible interpretation of the theorem is that the only new sets that can
be added to a model of RCA∗

0 + ¬IΣ0
1 are paths through binary trees. To see

this, note that if (M,X ) is a countable model of RCA∗
0 + ¬IΣ0

1, then by [39] it
can be �-extended (that is, extended without changing the first-order universe
M) to a model (M,Y) of WKL∗

0. If G ⊆M is an arbitrary set contained in any
other �-extension of (M,X ) satisfying RCA∗

0, then even though Y might not
contain G itself, by Theorem 2.1 it will contain a set H such that (M,G) and
(M,H) are isomorphic.

In its more general form, Theorem 2.1 allows the isomorphism to fix a given
finite tuple of first- and second-order elements. This has a number of conse-
quences both for WKL∗

0 and for other theories.
For example, it follows from Theorem 2.1 that provably in WKL∗

0+¬IΣ0
1 the

analytic hierarchy collapses down to ∆1
1, and even to a slightly more restricted

class. If one views arithmetical formulas (i.e., those without second-order quan-
tifiers) as quantifier-free, this means that WKL∗

0 + ¬IΣ0
1 is a model complete

theory, and it is the model companion of RCA∗
0+¬IΣ0

1. As a result, WKL is the
strongest Π1

2 statement that is Π1
1-conservative over RCA∗

0 + ¬IΣ0
1. The model

completeness phenomenon is quite unexpected, as it does not typically occur in
any recognizable form among fragments of first- or second-order arithmetic.

When n > 1 is arbitrary, and (M,X ) is a countable model of RCA∗
0 satisfying

the Σ0
n-collection scheme BΣ0

n and a relativization of WKL to ∆0
n-definable sets
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but not satisfying IΣ0
n, then the family of ∆0

n-definable sets of (M,X ) forms a
model of WKL∗

0+¬IΣ0
1. Thus, Theorem 2.1 applies to this family, implying that

the variety of �-extensions of models of RCA∗
0 +BΣ0

n + ¬IΣ0
n is also somewhat

limited, though in general not quite as drastically as for n = 1.
A corollary of this is related to a question of Towsner [42]. Towsner proved

that the set of Π1
2 sentences that are Π1

1-conservative over RCA∗
0 + IΣ0

n is Π2-
complete for each n > 1, and he asked whether this still holds true if IΣ0

n is
replaced by BΣ0

n. We show that this is, rather surprisingly, not the case if
additionally one explicitly negates IΣ0

n: for n > 1, the set of Π1
2 sentences that

are Π1
1-conservative over RCA∗

0+BΣ0
n+¬IΣ0

n is computably enumerable. On the
other hand, we show that Towsner’s question as originally stated has a positive
answer. The argument for this does not rely on Theorem 2.1, although one of
its ingredients is a result (Theorem 6.5) whose known proofs are also based on
automorphisms of models of arithmetic.

One further consequence of Theorem 2.1 is connected to Ramsey’s theorem
for pairs and two colours, RT2

2, and more precisely to the problem whether BΣ0
2

axiomatizes the Π1
1 consequences of RCA0+RT2

2. We prove that this is the case
if and only if BΣ0

2 proves all the ∀Π0
5 consequences of RCA0 + RT2

2 (note that
this is known for ∀Π0

3 consequences and open from ∀Π0
4 onwards); moreover, if

this is the case then it can be proved using the “single jump control” method of
[4]. We prove these facts by applying Theorem 2.1 to the ∆0

2-definable sets in
models of RCA0 +BΣ0

2 +¬IΣ0
2. A different proof is possible using the fact that

RT2
2 is a so-called restricted Π1

2 formula.
The remainder of this paper is structured as follows. We present the neces-

sary definitions and background in the preliminary Section 1. Section 2 contains
the proof of our isomorphism theorem. In Sections 3 and 4, we discuss the con-
sequences of the theorem for WKL∗

0 and for higher levels of the arithmetic
hierarchy, respectively. Section 5 concerns implications of the theorem for RT2

2,
as well as a more general discussion of the behaviour of restricted Σ1

1 formu-
las under negated Σ0

1-induction. Finally, in Section 6 we present our positive
solution to Towsner’s problem.

1 Preliminaries
We assume that the reader has some familiarity with fragments of second-order
arithmetic and with models of first- and second-order arithmetic (see [37] or [18]
for second-order arithmetic and [23] for models of first-order arithmetic).

We write ∆0
n, Σ0

n, Π0
n to denote the usual formula classes defined in terms of

first-order quantifier alternations, but allowing second-order free variables. On
the other hand, notation without the superscript 0, like ∆n, Σn, Πn, represents
analogously defined classes of purely first-order, or “lightface”, formulas, that do
not contain any second-order variables at all. If we want to specify the second-
order parameters appearing in a Σ0

n formula, we use notation like Σn(A). We
extend these conventions to naming theories.

If Γ is a class of formulas, then the class ∀∃Γ contains formulas that consist
of a block of universal (first- and/or second-order) quantifiers, followed by a
block of existential quantifiers, followed by a formula from Γ. The class ∀Γ is
defined analogously. For example, ∀Σ0

n and ∀Π0
n+1 are the same class of Π1

1

formulas.
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The theory RCA∗
0, originally defined in [39], is obtained from RCA0 by

weakening the Σ0
1-induction axiom IΣ0

1 to ∆0
1-induction and adding a Π2 axiom

exp that explicitly guarantees the totality of exponentiation. The theory WKL∗
0

is obtained from WKL0 in an analogous way; put differently, WKL∗
0 is RCA∗

0

plus Weak König’s Lemma WKL. Already RCA∗
0 proves the collection scheme

BΣ0
1, and the first-order consequences of RCA∗

0 and of WKL∗
0 are axiomatized

by BΣ1 + exp.
Already I∆0

0 + exp is strong enough to support a well-behaved universal
Σn(Y ) formula Satn(x, y, Y ) (“the Σ0

n formula (with Gödel number) x with one
first- and one second-order variable holds of the number y and the set Y ”), for
each standard natural number n. As a consequence, we have access to these
universal formulas in any theory containing RCA∗

0.
When we consider a model (M,X ) of some fragment of second-order arith-

metic (or simply work inside this fragment without reference to a specific model),
the word set without any qualifier refers to an element of the second-order uni-
verse X . In contrast, a Σ0

n-definable set (or Σ0
n-set for brevity) is any subset

of the first-order universe M that is definable in (M,X ) by Σ0
n formula. A

∆0
n-definable set or ∆0

n-set is a Σ0
n-set that is simultaneuosly definable by a Π0

n

formula. The notions of a Σn- and ∆n-set are defined in the obvious way.
In general, the models we study only satisfy ∆0

1-comprehension, so ∆0
n-sets

for n > 2 and Σ0
n-sets for n > 1 will not always be sets. However, thanks to

the availability of universal formulas, we can quantify over ∆0
n- or over Σ0

n-sets
using second-order quantifiers (e.g. “for every Y and every equivalent pair of a
Σn(Y ) and a Πn(Y ) formula...”). Whenever we present reasoning or statements
that are to be understood as formalized in second-order arithmetic, we indicate
quantification over definable sets that might not be sets by putting a tilde over
the quantified variable, as in X̃. So, for example, “for every Σ0

1-set X̃ there exists
X such that ∀k (k ∈ X̃ ↔ k ∈ X)” would be a slightly unusual way of expressing
the Σ0

1-comprehension axiom of ACA0. Sometimes, in the context of a model-
theoretic argument, we may also use a tilde to warn the reader that a given
subset of M might not belong to the second-order universe at hand. However,
in those situations we treat adding the tilde as a matter of convenience, and we
do not strive for consistency (partly because it would be unattainable: often we
work with several models at the same time, and what is a set in one model may
not be a set in another).

We write ∆0
n-Def(M,X ) for the collection of all the ∆0

n-sets of (M,X ). If A
is a subset of M , we write ∆0

n-Def(M,A) for the collection of all the ∆n(A)-sets.
If (M,X ) |= BΣ0

n + exp where n > 1, then (M,∆0
n-Def(M,X )) |= RCA∗

0. A
model of RCA∗

0 is topped if it has the form (M,∆0
1-Def(M,A)) for some A ⊆M .

The notation A 6T B means that A is ∆1(B)-definable. The join of A
and B, denoted by A ⊕ B, is {〈0, k〉 : k ∈ A} ∪ {〈1, k〉 : k ∈ B}; note that
A 6T A ⊕ B and B 6T A ⊕ B, but at the same time A ⊕ B is ∆1(A,B)-
definable. A ≡T B means that A 6T B and B 6T A. If A is a subset of some
model M and (M,A) |= I∆0(A) + exp, then A(n), the n-th jump of A, is the
Σn(A)-set {〈e, k〉 : (M,A) |= Satn(e, k,A)}. As usual, we write A′ for A(1), the
jump of A. The following result provides a variant of the important method of
“jump inversion” adapted to the setting of fragments of second-order arithmetic.

Theorem 1.1 (Belanger [3]). Let n > 1. Assume that M is a structure and
A,C ⊆M are such that (M,A) |= BΣ0

n+1 and (M,A′ ⊕C) |= BΣ0
n. Then there
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exists B ⊆M such that C is ∆2(A⊕B)-definable and (M,A⊕B) |= BΣ0
n+1.

A cut in a model of arithmetic M is any subset I ⊆M that contains 0 and
is closed downwards and under successor. We can write I ⊆e M to indicate
that I is a cut in M . Note that if (M,X ) |= RCA∗

0, then no proper cut in M
can be a member of X . On the other hand, some proper cut is Σ0

1-definable in
(M,X ) if and only if (M,X ) |= ¬IΣ0

1. If I is a Σ0
1-cut in (M,X ), then there

is an unbounded (i.e. cofinal in M) set A ∈ X that can be enumerated in X in
increasing order as A = {ai : i ∈ I}.

For an element s of a model M , Ack(s) stands for {a ∈M :M |= a ∈Ack s},
where ∈Ack is the usual Ackermann interpretation of set theory in arithmetic
(“the a-th bit in the binary notation for s is 1”). In a model (M,X ) of RCA∗

0,
sets of the form Ack(s) are exactly the bounded subsets of M that belong to X .
The following theorem states an important basic fact about such sets.

Theorem 1.2 (Chong–Mourad [5, Proposition 4]). Let (M,X ) |= RCA∗
0. Then

for every pair of bounded disjoint Σ0
1-definable sets X,Y ⊆M there exists s ∈M

such that Ack(s) ∩ (X ∪ Y ) = X.

We use the symbol ω to denote the set of standard natural numbers and the
symbol N to denote the set of natural numbers as formalized within RCA∗

0. In
other words, if (M,X ) is a model of RCA∗

0, then N(M,X ) is simply the first-order
universe M . This convention clashes with the custom of referring to a model
that has the same first-order universe as some other model but a smaller second-
order universe as an ω-submodel. Because of this, we use the term �-submodel
(and, conversely, �-extension) in such situations.

A structure A is recursively saturated if for any computable set of formu-
las {ψn(x, y) : n ∈ ω} and any tuple b of the appropriate length, if A |=
∃x
∧n
i=0 ψi(x, b) for each n ∈ ω, then there is a tuple ā such that A |= ψn(a, b)

for all n. Recursively saturated structures only play a very minor role in this
paper; for more on them, see e.g. [23, Chapters 11.2 & 15].

2 The isomorphism theorem
In this section, we state and prove our main theorem on isomorphisms be-
tween models of WKL∗

0 + ¬IΣ0
1. One can view the theorem as a generalization

to second-order arithmetic of a result of Kossak’s [30, Theorem 3.1] (see [31]
or [22] for a correction to the proof) saying that every countable model of
BΣ1(A) + exp + ¬IΣ1(A) has continuum many automorphisms. In fact, our
proof is somewhat reminiscent of Kossak’s argument, in which one also finds a
truth-coding trick that goes back to Smoryński [40, Lemma 1.2], Kotlarski [34,
Lemma 4.4], and Alena Vencovská [unpublished].

Theorem 2.1. Let (M,X ) and (M,Y) be countable models of WKL∗
0 such that

(M,X ∩ Y) |= ¬IΣ0
1. Let c be a tuple of elements of M and C be a tuple of

elements of X ∩ Y. Then there exists an isomorphism h between (M,X ) and
(M,Y) such that h(c) = c and h(C) = C.

Proof. Since (M,X ∩ Y) |= ¬IΣ0
1, there exists a set A ∈ X ∩ Y cofinal in M

and a proper cut I (e M such that A can be enumerated in increasing order
as A = {ai : i ∈ I}. We may assume w.l.o.g. that I is closed under exp (see
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[15, Theorem 2.4] or [28, Lemma 9]) and that the tuple of sets C contains
both A itself and the ∆1(A)-definable set {〈i, ai〉 : i ∈ I}, so that the relation
“x = ai” between x and i is ∆0(C)-definable. Finally, by adding a sufficiently
large number to all the elements of A if necessary, we may assume that a0 > I.

We build the isomorphism h by a back-and-forth construction. At each step
of the construction, we have finite tuples r, s, both in M , and R,S, in X ,Y
respectively, such that we have committed to h(r) = s and h(R) = S. Initially,
r = s = c and R = S = C. In each step, we add either a first- or a second-order
element to either the domain or the range of h, so that after ω steps of the
construction h becomes a bijection from (M,X ) onto (M,Y). The inductive
condition we maintain is:
(#) there exist b > I and ε > ω in M such that for each i ∈ I,

each j < b, and each ∆0 formula δ (with Gödel number) < ε,
(M,X ) |= δ(ai, j, r, R) iff (M,Y) |= δ(ai, j, s, S).

Of course, the statement that the (potentially nonstandard) formula δ is sat-
isfied in a model is expressed using a fixed truth definition for ∆0 formu-
las, Sat∆0 . Note that (#) holds at the beginning of the construction with
〈r,R〉 = 〈s, S〉 = 〈c, C〉. We have to verify that it can be preserved at each step
of the construction. There are two kinds of step to consider: adding a first-order
element to our tuple and adding a second-order element.

First-order step. Let us consider the case where we want to add a new first-
order element r∗ to the domain of our map h, so we need to find s∗ ∈ M such
that the tuples r, r∗, R and s, s∗, S still satisfy (#). The construction for adding
a first-order element to the range of h is analogous.

By the inductive assumption, we have b > I and ε > ω witnessing (#) for
r,R, s, S. Define b′ = log log log b and ε′ = log log ε. Notice that b′ > I and
ε′ > ω, since both I and ω are closed under exp.

Let D stand for the following definable subset of (I × b′ × ε′):

{〈i, j, pδq〉 : i ∈ I, j < b′, pδq < ε′ is (the Gödel number of) a ∆0 formula,
and (M,X ) |= δ(ai, j, r, r

∗, R))}

Both D and (I × b′ × ε′) \D are bounded and Σ0
1-definable, so by Theorem 1.2

there exists j∗ ∈M coding a set Ack(j∗) such that Ack(j∗)∩ (I × b′ × ε′) = D.
Moreover, since I < b′ � log log b and since we can choose ε small enough, we
can assume that j∗ < log b.

Let i∗ ∈ I be such that r∗ 6 ai∗ . By the definition of j∗, for each i ∈ I the
structure (M,X ) satisfies:

∃y6ai∗ ∀i′6 i ∀j6b′
∧

pδq<ε′

(
δ(ai′ , j, r, y, R) ↔ 〈i′, j, pδq〉 ∈Ack j

∗), (1)

as witnessed by y := r∗. If i ∈ I and i > i∗, then (1) implies:

∃x,y6ai

(
x = ai∗ ∧ y 6 x ∧ ∀i′6 i ∀v6ai

(
v = ai′ →

→ ∀j6b′
∧

pδq<ε′

(
δ(v, j, r, y, R) ↔ 〈i′, j, pδq〉 ∈Ack j

∗))). (2)
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For each fixed i ∈ I, the statement (2) can be expressed as a (nonstandard)
∆0 formula γ with parameters i∗, b′, j∗, ai, r, R. The formula γ consists of a
fixed-length part independent of ε′, followed by a conjunction whose conjuncts
correspond to ∆0 formulas δ with pδq < ε′. Each such conjunct is an equivalence,
with the formula δ, which consists of at most log ε′ symbols, written out on the
left-hand side and with pδq referred to by its (say binary) numeral on the right-
hand side. Thus, in total, γ has length O(ε′ · log(ε′)), which means that pγq < ε.
Moreover, the tuple of parameters 〈i∗, b′, j∗〉 is smaller than b.

We can therefore apply (#) from the inductive hypothesis with δ := γ and
j := 〈i∗, b′, j∗〉 in order to conclude that for each sufficiently large i ∈ I, the
structure (M,Y) satisfies (2) with r,R replaced by s, S. From this it easily
follows that (M,Y) in fact satisfies

∃y6ai∗ ∀i′6 i ∀j6b′
∧

pδq<ε′

(
δ(ai′ , j, s, y, S) ↔ 〈i′, j, pδq〉 ∈ Ack(j∗)

)
(3)

for each i ∈ I. Note that (3) is (1) with r,R replaced by s, S.
By BΣ0

1 in (M,Y), there must exist some y 6 ai∗ that witnesses (3) for all
i ∈ I. We can choose any such y as our s∗.

Second-order step. This step is somewhat similar to the first-order one, with
the role of BΣ0

1 now played by WKL. As before, we consider only the case where
we want to add a new second-order element R∗ ∈ X to the domain of h and we
need to find S∗ ∈ Y such that r,R,R∗ and s, S, S∗ still satisfy (#).

By the inductive assumption, we have b > I and ε > ω witnessing (#) for
r,R, s, S. The parameters b′ and ε′ are defined as in the first-order step. The
set D and the element j∗ are also defined as before, but with r, r∗, R replaced
by r,R,R∗.

It follows from the definition of j∗ that (M,X ) satisfies

∃F ⊆ [0, log ai)∀i′6 i ∀v6 log log ai

(
v = ai′ →

→ ∀j6b′
∧

pδq<ε′

(
δ(v, j, r, R, F ) ↔ 〈i′, j, pδq〉 ∈Ack j

∗)) (4)

for each large enough i ∈ I, as witnessed by F := R∗ ∩ [0, log ai). (The reason
for the restriction to large i ∈ I is that we want all terms in a ∆0 formula
δ with pδq < ε′ to evaluate to a number below log ai on arguments below
max(log log ai, b

′,max(r)). In this way, the value of δ on such arguments is
unchanged when we replace R∗ by R∗ ∩ [0, log ai).)

Arguing as in the first-order case, one can check that for a fixed i ∈ I the
statement (4) is equivalent to a ∆0 formula with Gödel number below ε and
parameters b′, j∗, ai, r, R, where the tuple 〈b′, j∗〉 is below b. Therefore, we can
apply (#) from the inductive hypothesis to conclude that (M,Y) satisfies

∃F ⊆ [0, log ai)∀i′6 i ∀v6 log log ai

(
v = ai′ →

→ ∀j6b′
∧

pδq<ε′

(
δ(v, j, s, S, F ) ↔ 〈i′, j, pδq〉 ∈Ack j

∗)) (5)

for each large enough i ∈ I. Note that (5) is (4) with r,R replaced by s, S.
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Let T ∈ Y be the tree consisting of all 0–1 strings σ such that, for each i ∈ I
large enough (the largeness is expressed by a single inequality, with no quantifiers
involved) and such that ai < |σ|, the string σ�log ai is the characteristic function
of F ⊆ [0, log ai) satisfying (5) for i. By the previous paragraph, there are
arbitrarily large elements of T , so by WKL in (M,Y), there is an infinite path
B ∈ Y through T . Any such path is the characteristic function of a set that we
can use as S∗.

Remark. A more refined version of the proof of Theorem 2.1, in which the
exponentially closed cut used to lower-bound the parameter b is decoupled from
the Σ0

1-cut indexing a cofinal subset of the first-order universe, can be used to
show the following. If (M,A) is a countable model of BΣ1(A)+ exp+¬IΣ1(A),
then any exponentially closed cut in M that contains some Σ1(A)-definable cut
is the greatest initial segment fixed pointwise by some automorphism of (M,A).
This is also the information about greatest pointwise fixed initial segments that
can be obtained from the previously published arguments drawing on [40] such
as those of [30]/[31] or [22].

We record the following immediate consequence of Theorem 2.1. Further
implications of the theorem for WKL∗

0 are discussed in the next section.

Corollary 2.2. Let (M,X ), (M,Y) be models of WKL∗
0 such that (M,X ∩Y) |=

¬IΣ0
1. Let c be a tuple of elements of M and C be a tuple of elements of X ∩Y.
Then (M,X , c, C) ≡ (M,Y, c, C), and if X ⊆ Y then (M,X ) 4 (M,Y),

where the elementarity applies to all L2-formulas.

3 Consequences for WKL∗
0

In this section, we show how Theorem 2.1 implies that Weak König’s Lemma
combined with the failure of Σ0

1-induction has a number of unusual properties.
In particular, we prove that in WKL∗

0 + ¬IΣ0
1 the analytic hierarchy collapses

(Corollary 3.3, Theorem 3.13) and the low basis theorem fails in a very strong
sense (Theorem 3.9). We also show that WKL is the strongest Π1

2 statement
that is Π1

1-conservative over RCA∗
0 + ¬IΣ0

1 (Theorem 3.6).
Most of the main results of this section can be interpreted in general model-

theoretic terms, cf. e.g. [41, Chapter 2.2]. If we view arithmetical formulas
as quantifier-free, Π1

1 as purely universal, Π1
2 as ∀∃, and so forth, then, for

instance, Corollary 3.3 says that the ∀∃ theory WKL∗
0+¬IΣ0

1 is model complete.
Together with the Π1

1 conservativity of WKL∗
0 + ¬IΣ0

1 over RCA∗
0 + ¬IΣ0

1 from
Simpson–Smith [39], this implies that WKL∗

0+¬IΣ0
1 is the model companion of

RCA∗
0 + ¬IΣ0

1 (by Theorem 3.13, it actually has the slightly stronger property
of being a model completion of RCA∗

0 + ¬IΣ0
1). Thus, models of WKL∗

0 + ¬IΣ0
1

are precisely the existentially closed models of RCA∗
0+¬IΣ0

1, and WKL∗
0+¬IΣ0

1

is the strongest ∀∃-theory that has the same purely universal consequences as
RCA∗

0 + ¬IΣ0
1 (this is essentially what Theorem 3.6 tells us).

In fact, most of the results mentioned above could be proved using Corol-
lary 2.2 and general model-theoretic arguments. However, we give proofs that
are more specialized to arithmetic, because they provide some additional infor-
mation. We begin by checking that Σ0

1-induction is not needed to justify the
well-known fact that a model of WKL contains many coded submodels of WKL
[37, Corollary VIII.2.7].
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Definition 3.1. Given (M,X ) |= RCA∗
0, a set W ∈ X , and an element k ∈M ,

let Wk stand for {j ∈M : 〈k, j〉 ∈W}. We say that W codes the family of sets
{Wk : k ∈ M}, and we refer to (M, {Wk : k ∈ M}) as a coded �-submodel of
(M,X ). We use the abbreviated term coded �-model if (M,X ) is clear from the
context or irrelevant, and also to refer to (N, {Wk : k ∈ N}) when working in a
formal theory.

Lemma 3.2. Let (M,X ) |= RCA∗
0 and let A ∈ X . There exists a ∆1(A)-

definable infinite 0–1 tree T ∈ X such that if W ⊆ M is an infinite path in T ,
then (M, {Wk : k ∈M}) is a model of WKL∗

0 with A =W0.
As a consequence, for every (M,X ) |= WKL∗

0 and every A ∈ X , there exists
W ∈ X coding an �-model (M,W) of WKL∗

0 with A ∈ W.

Note that it is not assumed in the lemma that W ∈ X or even that BΣ1(W )
holds: an arbitrary subset W ⊆ M with the property that the characteristic
function of W �k is a node of T for every k ∈ M will have the property that
(M, {Wk : k ∈M}) |= WKL∗

0.

Proof. Let (M,X ) |= RCA∗
0 and A ∈ X be given.

It is easy to check that the well-known equivalence between WKL and the
Σ0

1-separation principle [37, Lemma IV.4.4] holds over RCA∗
0. Moreover, Σ0

1-
separation clearly implies ∆0

1-comprehension. Thus, given W ⊆ M , to prove
that the structure (M, {Wk : k ∈ M}) is a model of WKL∗

0 it suffices to show
that it satisfies I∆0

0, that {Wk : k ∈ M} is closed under join, and that for any
k ∈M and any two Σ1(X) formulas ϕ(x,X), ψ(x,X) (possibly with first-order
parameters from M), if ϕ(·,Wk) and ψ(·,Wk) define disjoint sets, then there
is some W` separating them. Given an arbitrary tree from a model (M,X ) |=
RCA∗

0 and an arbitrary W ⊆M that is a path in that tree, I∆0(W ) will always
hold, and a fortiori {Wk : k ∈ M} will satisfy I∆0

0, simply because bounded
initial segments of W will always have the form Ack(s) for some s ∈ M . So, it
is enough to verify closure under join and Σ0

1-separation.
Let (ϕi(x,X))i∈M be an effective listing of all Σ0

1 formulas in M with a
unique first-order variable x and a unique second-order free variable X. (The
formulas may involve numerals that represent first-order parameters.) We take
T to be a 0–1 tree describing finite approximations to some W such that:

(a) W0 = A,

(b) W〈0,i,j〉 =Wi ⊕Wj for every i, j,

(c) for every i, j, k ∈ M , if the sets defined by ϕi(·,Wk) and ϕj(·,Wk) are
disjoint, then W〈1,i,j,k〉 is a separating set for them.

Formally, to determine whether a finite binary string σ belongs to T , we look
at the largest s such that 〈i, j〉 < |σ| for each i, j < s, so that σ can be viewed
as containing an s × s binary-valued matrix. The conditions (a)–(c) are then
expressed as requirements concerning this matrix. For instance, (a) is expressed
by requiring that σ(〈0, i〉) = 1 iff i ∈ A, for each i < s. We leave (b) to the
reader. The condition (c) is expressed by requiring that, whenever 〈1, i, j, k〉 < s
and there is no x < s such that there are witnesses below s for both the formulas

ψi(x) := ϕi(x, {w < s : σ(〈k,w〉) = 1}),
ψj(x) := ϕj(x, {w < s : σ(〈k,w〉) = 1}),
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then for each x < s, the existence of y < s witnessing ψi(x) implies that
σ(〈〈1, i, j, k〉, x〉) = 1, and the existence of y < s witnessing ψj(x) implies that
σ(〈〈1, i, j, k〉, x〉) = 0.

It is straightforward to verify that T is an infinite ∆1(A)-definable binary
tree. By our discussion above, if W ⊆M is an infinite path in T , then W codes
an �-model satisfying WKL∗

0 and containing A.

Remark. The construction of a single infinite binary tree whose paths corre-
spond to coded models of WKL has been used earlier, for instance in the con-
text of comparing variants of Weihrauch reducibility [19, Proposition 4.9]. It
can also be applied to give a relatively simple proof of the result of [15, 1] that
WKL0 does not have superpolynomial proof speedup over RCA0 for Π1

1 sen-
tences (see [2], or see [43] for a very similar argument expressed in terms of
the arithmetized completeness theorem). Combined with the formalized forcing
argument described at the end of the present section, it can also prove the fact,
alluded to in [27], that a similar non-speedup result holds also for WKL∗

0 over
RCA∗

0.
Note that for any L2-formula ϕ(x,X), there is a single arithmetical formula

in variables x,X,W that expresses the property “W codes an �-model contain-
ing X and satisfying ϕ(x,X)” in RCA∗

0. The number of first-order quantifier
alternations in this formula will depend on ϕ.

Corollary 3.3. Over WKL∗
0+¬IΣ0

1, any L2-formula ϕ(x,X) is provably equiv-
alent both to a Σ1

1 formula and to a Π1
1 formula.

More specifically, WKL∗
0 + ¬IΣ0

1 proves that the following three statements
are equivalent for any x,X:

(i) ϕ(x,X),

(ii) “there exists a coded �-model of WKL∗
0 + ¬IΣ0

1 + ϕ(x,X)”,

(iii) “every coded �-model of WKL∗
0+¬IΣ0

1 containing x,X satisfies ϕ(x,X)”.

Proof. By Lemma 3.2, it is provable in WKL∗
0 +¬IΣ0

1 that for every x,X there
is a coded �-model of WKL∗

0 + ¬IΣ0
1 containing X. By Corollary 2.2, it is

provable in WKL∗
0 that any such model satisfies ϕ(x,X) if and only if ϕ(x,X)

holds. This proves both (i) ↔ (ii) and (i) ↔ (iii).

Corollary 3.3 says that in WKL∗
0 + ¬IΣ0

1 the analytic hierarchy collapses to
∆1

1. At the end of this section, we will explain how this collapse result can be
strengthened.

We can use Corollary 3.3 and other consequences of Theorem 2.1 to give a
characterization of Π1

1-conservativity over RCA∗
0+¬IΣ0

1 for Π1
2 sentences. Before

that, however, we digress briefly in order to point out that the Π1
1 consequences

of RCA∗
0 + ¬IΣ0

1 are not as pathological a theory as might be supposed.

Proposition 3.4. The Π1
1 consequences of RCA∗

0+¬IΣ0
1 are contained in those

of ACA0; in particular, they are true in all ω-models. They are incomparable
to the Π1

1 consequences of RCA0 + IΣ0
n, for any n ∈ ω.

Proof. As discussed in Section 6, the principle CΣ0
n+1 is a Π1

1 statement provable
in RCA∗

0+¬IΣ0
1 but not in RCA0+IΣ0

n. Of course, Con(I∆0+exp) or the totality
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of the iterated exponential function are examples of Π1
1 statements provable in

RCA0 but not in RCA∗
0 + ¬IΣ0

1.
It remains to prove that the Π1

1 consequences of RCA∗
0+¬IΣ0

1 are contained
in those of ACA0, or by contraposition, that any Σ1

1 statement consistent with
ACA0 is consistent with RCA∗

0 + ¬IΣ0
1. This is implicit in the proof of [29,

Proposition 2.2]. We spell out the argument. Let (M,X ) be a countable re-
cursively saturated model of ACA0 + ∃Xα(X), where α is arithmetical, and
let A ∈ X be such that (M,A) |= α(A). The one-sorted structure (M,A) is a
countable recursively saturated model of PA(A).

By recursive saturation, for every a ∈M there exists b ∈M that is above any
element definable in (M,A) with parameters below a. By another application
of recursive saturation, there exists a sequence 〈ak〉k<c for c nonstandard such
that each ak is above any element definable in (M,A) with parameters below
ak−1. Let I be the initial segment of M generated by C = {an : n ∈ ω}, and
let AI = A ∩ I. Note that I is obviously closed under exp and that AI ⊕ C is
the intersection with I of a definable set, so the structure (I, AI ⊕ C) satisfies
BΣ0

1. Of course, it does not satisfy IΣ0
1, because ω is Σ1(C)-definable.

Since I is closed under definability in (M,A) and PA(A) has definable Skolem
functions, (I, AI) is an elementary substructure of (M,A). Thus, (I, AI) |=
α(AI). Putting things together, we conclude that (I,∆0

1-Def(I, AI ⊕ C)) is a
model of RCA∗

0 + ¬IΣ0
1 + ∃Xα(X).

Lemma 3.5. Let ψ be a Π1
2 sentence. Then ψ is Π1

1-conservative over RCA∗
0 +

¬IΣ0
1 if and only if RCA∗

0 proves the Π1
1 sentence “every coded �-model of

WKL∗
0 + ¬IΣ0

1 satisfies ψ”.

Proof. If ψ is a Π1
2 sentence which is Π1

1-conservative over RCA∗
0 + ¬IΣ0

1, then,
by [39] and a routine union of chains argument (cf. [44]), WKL ∧ ψ is also Π1

1-
conservative over RCA∗

0 + ¬IΣ0
1. By Corollary 3.3, WKL∗

0 + ψ + ¬IΣ0
1 proves

that every coded �-model of WKL∗
0+¬IΣ0

1 satisfies ψ. So, by Π1
1-conservativity,

also RCA∗
0 + ¬IΣ0

1 proves this statement, which is then obviously provable in
RCA∗

0 since RCA∗
0 + IΣ0

1 rules out the existence of coded �-models of ¬IΣ0
1.

On the other hand, if there is a Σ1
1 sentence ξ consistent with RCA∗

0 +¬IΣ0
1

but not with RCA∗
0+¬IΣ0

1+ψ, then by [39] there is a model of WKL∗
0+¬IΣ0

1+ξ.
Clearly, this model must also satisfy ¬ψ, so by Corollary 3.3 it contains a coded
�-submodel satisfying WKL∗

0 + ¬IΣ0
1 + ¬ψ.

Remark. Even though Corollary 3.3 applies to arbitrary L2-formulas ϕ, the
proof of Lemma 3.5 employs a union of chains argument that only works for
Π1

2 statements. In fact, Lemma 3.5 cannot be generalized to Σ1
2 sentences ψ, as

witnessed by ψ := ¬WKL [28, Proposition 11].
Lemma 3.5 already implies that the set of Π1

2 sentences that are Π1
1-conservative

over RCA∗
0 +¬IΣ0

1 is c.e., and thus it is a computably axiomatized theory. The
next result states that in fact this theory has a rather simple axiomatization.

Theorem 3.6. Let ψ be a Π1
2 sentence. Then ψ is Π1

1-conservative over RCA∗
0+

¬IΣ0
1 if and only if WKL∗

0 + ¬IΣ0
1 ` ψ.

Proof. Of course, if the Π1
2 sentence ψ follows from WKL∗

0 + ¬IΣ0
1, then it is

Π1
1-conservative over RCA∗

0 + ¬IΣ0
1, by [39].
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On the other hand, if ψ is Π1
2 and Π1

1-conservative over RCA∗
0 +¬IΣ0

1, then,
by Lemma 3.5, RCA∗

0 proves that every coded �-model of WKL∗
0+¬IΣ0

1 satisfies
ψ. But then Corollary 3.3 implies that WKL∗

0 + ¬IΣ0
1 proves ψ.

Remark. Theorem 3.6 means in particular that, in contrast to the tree forcing
used to add paths through binary trees to a model, any forcing notion that can
be used to obtain witnesses to statements that do not follow from WKL+¬IΣ0

1

will not in general preserve BΣ0
1 when applied to a ground model satisfying

BΣ0
1+exp+¬IΣ0

1. Note that unprovability from WKL+¬IΣ0
1 is known e.g. for

relatively weak Ramsey-theoretic such as the cohesive Ramsey’s Theorem CRT2
2

(cf. [14]), which is very easy to witness using either Cohen or Mathias forcing.
Similar observations specifically about Cohen forcing, but in the context of

models of ¬exp, were made in [11] and [12]. Other results showing that it can
be impossible to preserve collection while forcing include [38, Theorem 1], [20,
Theorem 4.3].

An important feature of WKL is the low basis theorem [21]: if T is any
infinite 0–1 tree, then T has an infinite path W which is low in T , i.e. every
∆2(T ⊕ W )-definable set is ∆2(T )-definable. It is known that the low basis
theorem holds provably in RCA0, in the sense that if (M,∆0

1-Def(M,T )) |=
RCA0 ∧ “T is an infinite 0–1 tree”, then there is some W ⊆ M low in T such
that W is an infinite path in T and (M,∆0

1-Def(M,T ⊕W )) still satisfies RCA0

([16], see [17, Chapter I.3(b)]).
Chong and Yang [8] showed that some important properties of low sets fail

in the absence of Σ0
1-induction: for example, over RCA∗

0 + ¬IΣ1 there is no
non-computable low Σ1-set. Here, we prove that the low basis theorem fails in
RCA∗

0 in a strong way: in general, a computable tree in a model of RCA∗
0 will

not even have an arithmetical path.

Lemma 3.7. Let (M,X ) |= RCA∗
0, and let W ∈ X code an �-model (M,W) |=

RCA∗
0. Then W /∈ W.

Proof. If W codes W, then the sequence 〈Wk〉k∈M contains all sets that belong
to W. By a standard diagonalization argument, such a sequence cannot itself
belong to W.

Lemma 3.8. Let (M,X ) |= WKL∗
0 + ¬IΣ0

1. Then for every A in X , there is a
set B ∈ X which is not arithmetically definable in A.

Proof. Suppose otherwise. By Lemma 3.2 there exists W ∈ X coding an �-
model W of WKL∗

0 + ¬IΣ0
1 such that A ∈ W. Assume that there is an arith-

metical formula ϕ(x,A), with no set parameters other than A, which defines
W in (M,A). Then (M,X ) |= ∃X ∀x (x ∈ X ↔ ϕ(x,A)). On the other hand,
Lemma 3.7 implies that W /∈ W, so (M,W) 6|= ∃X ∀x (x ∈ X ↔ ϕ(x,A)). This
contradicts Corollary 2.2.

Theorem 3.9. Let (M,X ) |= RCA∗
0 and let A ∈ X be such that (M,A) |=

¬IΣ1(A). Then there exists a ∆1(A)-definable infinite 0–1 tree T such that
for any W ⊆ M , if W is an infinite path in T , then W is not arithmetically
definable in A (in particular, it is not low in A).

Proof. Let (M,X ) and A be as above, and let T be the ∆1(A)-definable tree
from Lemma 3.2. IfW is an infinite path in T , then, letting W := {Wk : k ∈M},
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we have (M,W) |= WKL∗
0 and A ∈ W. If W were arithmetically definable in A,

then every set B ∈ W would also be arithmetically definable in A, contradicting
Lemma 3.8.

We may reformulate this as a reverse mathematics-style statement, which
follows immediately from Theorem 3.9 and the aforementioned provability of
the low basis theorem in RCA0.

Corollary 3.10. For each n > 2, the following statements are equivalent prov-
ably in RCA∗

0:

(i) RCA0,

(ii) for every infinite 0–1 tree T , there exists a Σn(T )-set W̃ such that W̃ is
an infinite path in T and IΣ1(W̃ ) holds,

(iii) for every infinite 0–1 tree T , there exists a Σn(T )-set W̃ such that W̃ is
an infinite path in T .

As far as we know, the following purely model-theoretic question remains
open. If the answer is negative, then it has to be witnessed by a model that is
not only uncountable, but does not have countable cofinality.
Question 3.11. Is it the case that for every model (M,X ) |= RCA∗

0 and every
infinite 0–1 tree T ∈ X , there exists an infinite path in T?

To conclude this section, we return to the topic of the collapse of the analytic
hierarchy. We discuss how to strengthen Corollary 3.3 to say that provably in
RCA∗

0, if A is any set witnessing the failure of IΣ0
1, then each L2-formula is

equivalent not merely to a ∆1
1 formula, but to an arithmetical formula with A

as parameter. In particular, if even IΣ1 fails, then every L2-formula is equivalent
to an arithmetical one with no additional parameters. The strengthened collapse
result is proved by a forcing argument which is routine but tedious, so we only
provide a sketch.

It is well-known that if T is an infinite 0–1 tree in a countable model of RCA∗
0,

then forcing with ∆1(T )-definable infinite subtrees of T gives rise to an infinite
path in T that still satisfies BΣ0

1 [39]. The analogous forcing construction for
adding paths to trees that live in models of RCA0 was formalized within RCA0

in [1, Sections 4–5]. Here, we formalize in RCA∗
0 a variant of this forcing such

that the generic sets correspond to coded �-models of WKL∗
0.

The following definition is made in RCA∗
0.

Definition 3.12. Given any set X and another set A that we treat as a pa-
rameter, let TX,A be a tree defined like the one in Lemma 3.2 but with paths
corresponding to sets W that code an �-model of WKL∗

0 with W0 = X, W1 = A.
The conditions of the forcing notion PX,A are the ∆1(X,A)-definable infinite
subtrees of TX,A, ordered by inclusion. A first-order name has the form k̇ for
a natural number k, and it is intended to denote k itself. A second-order name
has the form Ġk for a natural number k, and it is intended to denote Gk where
G is a generic path in TX,A.

For a condition S and a sentence ϕ of the language obtained by extending L2

with all first- and second-order names, treated as constants, the forcing relation
S 
X,A ϕ (with the subscripts often omitted below) is defined in the following

13



way. If ϕ is a purely first-order atom, then S 
 ϕ if and only if ϕ holds (under
the intended interpretation of names). If ϕ has the form t(k̇) ∈ Ġ`, then S 
 ϕ
if the set {σ ∈ S : σ(〈`, t(k̄)〉) = 0} is finite. The 
 relation is extended to
non-atomic formulas (which we take to be built using ¬,∧, and ∃) as follows:

S 
 ¬ϕ := ∀Q�S (Q 6
 ϕ),

S 
 ϕ ∧ ψ := (S 
 ϕ ∧ S 
 ψ),

S 
 ∃xϕ := ∀Q�S ∃R�Q∃k (R 
 ϕ(k̇)),

S 
 ∃X ϕ := ∀Q�S ∃R�Q∃k (R 
 ϕ(Ġk)).

Note that for any L2-formula ϕ(x1, . . . , xn, Y1, . . . , Ym), the statement S 
X,A
ϕ(ẋ, Ġy1 , . . . , Ġym) can be expressed by an arithmetical formula in x, y, S,X, and
A.

For a model (M,X ) |= RCA∗
0 and X,A ∈ X , a generic filter G in PX,A can

be identified with an infinite path in TX,A, which codes an �-model (M, {Gk :
k ∈ M} of WKL∗

0 with G0 = X and G1 = A. We refer to this structure as
M [G]. One can prove the following two statements by (simultaneous) induction
on the complexity of ϕ. Firstly, if S is a condition, then S 
 ϕ iff for every
generic G with S ∈ G it holds that M [G] |= ϕ (as usual, under the intended
interpretation of names). Secondly, if G is generic and M [G] |= ϕ, then there is
some condition S ∈ G such that S 
 ϕ.

If (M,X ) is a model of WKL∗
0 and A is a witness for the failure of IΣ0

1 in
(M,X ), then by Corollary 2.2, for any c ∈ M , any X ∈ X , and G generic
for PX,A, the structure (M [G], c,X) is elementarily equivalent to (M,X , c,X).
This means that either every condition will force ϕ(ċ, Ġ0) or every condition
will force ¬ϕ(ċ, Ġ0), depending on whether ϕ(c,X) holds. Thus, we obtain the
following collapse result:

Theorem 3.13. Let ϕ(x,X) be an L2-formula. Then WKL∗
0 proves that fol-

lowing statements are equivalent for any x,X and any Y such that ¬IΣ1(Y )
holds:

(i) ϕ(x,X),

(ii) 
X,Y ϕ(ẋ, Ġ0).

In particular, over WKL∗
0 + ¬IΣ1, ϕ(x,X) is equivalent to the arithmetical

formula 
X,∅ ϕ(ẋ, Ġ0), which has no free variables other than X.

4 Generalization to higher levels
If n > 2 and (M,X ) is a model of RCA0+BΣ0

n+¬IΣ0
n, then the ∆0

n-definable sets
of (M,X ) form a model of RCA∗

0+¬IΣ0
1. Thus, it is reasonable to expect that the

results of Sections 2 and 3 say something about RCA0+BΣ0
n+¬IΣ0

n, for instance
about Π1

1-conservativity over that theory. The case of n = 2 is particularly
interesting, as some prominent problems concerning the first-order consequences
of Ramsey’s Theorem for pairs and related statements boil down to the question
whether these statements are Π1

1-conservative over RCA0 +BΣ0
2 + ¬IΣ0

2.
In this section, we show that Theorem 2.1 does indeed have some conse-

quences for higher levels of the arithmetic hierarchy. First, however, we gener-
alize the results of Proposition 3.4 to n > 2.
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Proposition 4.1. For each n > 1, the Π1
1 consequences of RCA∗

0+BΣ0
n+¬IΣ0

n

are contained in those of ACA0 and incomparable to the Π1
1 consequences of

RCA0 + IΣ0
m for each m > n.

Proof. The argument for incomparability with the Π1
1 consequences of RCA0 +

IΣ0
m for m > n is essentially the same as in the proof of Proposition 3.4 and

uses the statements CΣ0
m+1 and Con(IΣn−1).

The argument showing that the Π1
1 consequences of RCA∗

0 + BΣ0
n + ¬IΣ0

n

are contained in those of ACA0 is also similar to the one in Proposition 3.4,
but now it has to be combined with a “jump inversion” argument based on
[3]. Let (M,X ) be a countable recursively saturated model of ACA0 + α(A),
where A ∈ X and α is arithmetical, and let C, I,AI be obtained as in the
proof of Proposition 3.4. We then know that (I, AI ⊕ C) |= BΣ0

1 + α(AI) and
(I, C) |= ¬IΣ0

1. Moreover, (I, AI) is an elementary substructure of (M,A),
which means in particular that (I, AI) satisfies induction for all arithmetical
formulas, and, by construction, that (I, (AI)

(m) ⊕ C) |= BΣ0
1 for any m.

Let C1 := C. If n = 1, we have nothing more to do. Otherwise, note
that (I, (AI)

(n−2)) |= BΣ0
2. Since (I, (AI)

(n−1) ⊕ C1) |= BΣ0
1, we can use

Belanger’s jump inversion Theorem 1.1 to obtain some C2 ⊆ I such that
(I, (AI)

(n−2) ⊕ C2) |= BΣ0
2 and C1 is ∆2(C2)-definable. If n = 2, we are done,

and otherwise, since (I, (AI)
(n−3)) |= BΣ0

3 and (I, (AI)
(n−2) ⊕ C2) |= BΣ0

2, we
can use Theorem 1.1 again to get C3 such that (I, (AI)

(n−3) ⊕ C3) |= BΣ0
3 and

C1 is ∆2(∆2(C3))-, thus ∆3(C3)-definable. Continuing in this way, we eventu-
ally get Cn such that (I, AI ⊕ Cn) |= BΣ0

n and C1 is ∆n(Cn)-definable. But
then (I,∆0

1-Def(AI ⊕ Cn)) is a model of RCA∗
0 +BΣ0

n + ¬IΣ0
n + ∃Xα(X).

Corollary 4.2. For any n > 1, the Π1
1-consequences of RCA∗

0 + BΣ0
n + ¬IΣ0

n

are contained in those of

RCA∗
0 +BΣ0

n + {IΣ0
m → BΣ0

m+1 : m ∈ ω}. (6)

The theory in (6) is one of two natural relativizations of the theory IB from
[24]. In [26], this is referred to as the “weak” relativization.

Proof. Let (M,X ) be a model of the theory in (6) and let A ∈ X satisfy α(A)
with α arithmetical. If m ∈ ω is the smallest such that (M,X ) 6|= IΣ0

m, then
m > n and (M,X ) |= BΣ0

m, so (M,∆0
m−n+1-Def(M,X )) |= RCA∗

0 + BΣ0
n +

¬IΣ0
n + ∃Xα(X). On the other hand, if (M,X ) satisfies induction for all arith-

metical formulas, then the closure of X under arithmetical definability wit-
nesses that ∃Xα(X) is consistent with ACA0 and thus, by Proposition 4.1,
with RCA∗

0 +BΣ0
n + ¬IΣ0

n.

In order to generalize further results of Section 3, in particular Lemma 3.5
and Theorem 3.6, to arbitrary n, we need a suitable variant of Weak König’s
Lemma.

Definition 4.3. Let ∆0
n-WKL be the statement: “for every ∆0

n-set T̃ that is
an infinite 0–1 tree, there exists a ∆0

n-set W̃ that is an infinite path in T̃”.

Note that ∆0
1-WKL is equivalent to WKL provably in RCA∗

0. On the other
hand, Belanger [3] showed that ∆0

2-WKL is equivalent to the cohesive set princi-
ple COH over RCA0+BΣ0

2. The appearance of BΣ0
2 here is not incidental. COH,
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being Π1
1-conservative over RCA0 [4], does not prove BΣ0

2, but an argument in
the spirit of [13, Proposition 5] shows that ∆0

2-WKL does.

Proposition 4.4. For every n > 1, ∆0
n-WKL implies BΣ0

n over RCA∗
0. In fact,

BΣ0
n is already implied by the statement “for every ∆0

n-set that is an infinite
0–1 tree and every number k, there is a node at level k in the tree with infinitely
many nodes above it”.

Proof. For fixed n, we argue that the statement above implies BΣ0
m by external

induction on m 6 n. The thesis obviously holds for m = 1. Now assume that
it holds for m < n and that BΣ0

m+1 fails, and let ψ(x, y) be a Π0
m formula such

that for some k, it holds that ∀σ∈{0, 1}k ∃y ψ(σ, y) but the witnesses y cannot
be bounded in a way independent of σ.

Consider the definable set of binary strings T̃ consisting of all strings with
length 6 k and all σ_τ where |σ| = k and there is no y 6 |τ | with ψ(σ, y).
Then T̃ is a ∆0

m+1-set (in fact, a Σ0
m-set) by BΣ0

m. Moreover, it is an infinite
0–1 tree, but for every σ of length k there are only finitely many vertices in T̃
above σ.

Lemma 4.5. For every n > 1, ∆0
n-WKL is Π1

1-conservative over RCA∗
0+BΣ0

n.
Moreover, any countable topped model of RCA∗

0 + BΣ0
n can be �-extended to a

model of RCA∗
0 +∆0

n-WKL.

Proof. For n = 1, this is [39, Corollary 4.7], and for n = 2, it follows from results
of [6] and [3].

We prove the general case by induction on n. Like in the proof of Propo-
sition 4.1, we use a jump inversion argument based on Theorem 1.1. Assume
that the statement holds for n. To prove it for n+ 1, it is enough to show that
given any countable model (M,A) |= BΣ0

n+1 and a ∆n+1(A)-definable infinite
0–1 tree T̃ , we can find B ⊆ M such that (M,A⊕ B) |= BΣ0

n+1 and there is a
∆n+1(B)-definable path in T̃ .

Note that (M,A′) |= BΣ0
n and T̃ is ∆n(A

′)-definable. So, by our inductive
assumption, there exists P̃ ⊆ M such that (M,A′ ⊕ P̃ ) |= BΣ0

n and there is
a ∆n(P̃ )-definable path G̃ in T̃ . By Theorem 1.1, there is some B ⊆ M such
that (M,A ⊕ B) |= BΣ0

n+1 and P̃ is ∆2(B)-definable. Thus, G̃ is ∆n(∆2(B))-
definable, and hence ∆n+1(B)-definable because ∆2(B)-collection holds.

It follows immediately from Theorem 2.1 that any two countable models of
∆0
n-WKL that �-extend the same model of BΣ0

n + ¬IΣ0
n are to some degree

similar.

Corollary 4.6. Let n > 1, and let (M,X ) and (M,W) be countable models
of RCA∗

0 + ∆0
n-WKL such that (M,X ∩ W) |= ¬IΣ0

n. Let c be a tuple of
elements of M and C be a tuple of subsets of M that are ∆0

n-definable in both X
and W. Then there exists an isomorphism h between (M,∆0

n-Def(M,X )) and
(M,∆0

n-Def(M,W)) such that h(c) = c and h(C) = C.

Proof. Apply Theorem 2.1 to (M,∆0
n-Def(M,X )) and (M,∆0

n-Def(M,W)).

We introduce an auxiliary piece of notation.
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Definition 4.7. Given n > 0 and a set A, we write X �n
A Y for the statement

“for every ∆n(X⊕A)-set T̃ that is an infinite 0–1 tree, there exists a ∆n(Y ⊕A)-
set W̃ that is an infinite path in T̃”.

The choice of the � symbol is inspired by the computability-theoretic no-
tation X � Y , which means that Y has PA-degree relative to X, that is, every
X-computable infinite 0–1 tree has a Y -computable path.

Lemma 4.8. For each n > 1, RCA∗
0 proves that:

(a) for any sets X,Y,A, if X �n
A Y , then BΣn(X ⊕A) holds,

(b) for any sets X,Y,A: X �n
A Y holds if and only if there exists a ∆n(Y ⊕A)-

set that codes an �-model of WKL∗
0 containing (X ⊕A)(n−1),

(c) ∆0
n-WKL is equivalent to ∀X ∀Z ∃Y X �n

Z Y .

Proof. To prove (a), note that if X �n
A Y , then in particular for every number

k and every ∆n(X ⊕A)-set that is an infinite 0–1 tree, there is a node at level
k with infinitely many nodes above it. By the argument from the proof of
Proposition 4.4, this implies BΣn(X ⊕A).

We turn to (b). First assume that there is a ∆n(Y ⊕A)-set W̃ coding an
�-model W̃ of WKL∗

0 such that (X⊕A)(n−1) ∈ W̃. Clearly, every element of W̃
is a ∆n(Y ⊕A)-set. Moreover, every ∆n(X ⊕A)-set belongs to W̃, because W̃
contains (X⊕A)(n−1)and is closed under ∆0

1-comprehension. If the ∆n(X⊕A)-
set happens to be an infinite 0–1 tree, it will have an infinite path belonging to
W̃. So, X �n

A Y holds. In the other direction, if X �n
A Y holds, then by (a)

the ∆n(X ⊕A)-sets form a model of RCA∗
0, so by Lemma 3.2 there is a single

infinite ∆n(X ⊕A)-definable 0–1 tree T̃ such that any W̃ that is a path in T̃
codes an �-model of WKL∗

0 containing (X ⊕ A)(n−1). Since X �n
A Y , some

such W̃ is a ∆n(Y ⊕A)-set.
In the proof of (c), the right-to-left direction is immediate. In the other

direction, assuming ∆0
n-WKL we get BΣ0

n by Proposition 4.4. So, by Lemma 3.2
again, given sets X and Z there is a single infinite ∆n(X ⊕ Z)-definable 0–1 tree
T̃ such that any path in T̃ codes an �-model of WKL∗

0 containing (X⊕Z)(n−1).
By ∆0

n-WKL, there is some Y for which there is a ∆n(Y )-definable path in T̃ .
Then X �n

Z Y holds for any such Y .

Definition 4.9 (�n
A-basis theorem). Let n > 1 and let ψ be a Π1

2 sentence
of the form ∀X ∃Y α(X,Y ) where α is arithmetical. For a given set A, the
�n
A-basis theorem for ψ is the following statement:

for any sets Z and X, if X �n
A Z then there exists a ∆n(Z ⊕A)-set

Ỹ such that α(X, Ỹ ) and X ⊕ Ỹ �n
A Z.

The following result can be viewed as a generalization of Lemma 3.5.

Theorem 4.10. Let n > 1 and let ψ be a Π1
2 sentence of the form ∀X ∃Y α(X,Y )

where α is arithmetical. Then ψ is Π1
1-conservative over RCA∗

0 + BΣ0
n + ¬IΣ0

n

if and only if RCA∗
0 +BΣ0

n proves the following Π1
1 sentence γnψ:

“for every set A, if IΣn(A) does not hold, then the �n
A-basis theorem

for ψ holds”.
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We will write γψ instead of γnψ whenever n is clear from the context, including
in the proof of Theorem 4.10 itself.

Proof. The left-to-right direction can be proved by an argument that is sim-
ilar to the one in the proof of Lemma 3.5, but a bit more complicated. We
argue in a slightly different way in order to obtain some additional information
(Corollary 4.11).

Let ψ be the Π1
2 sentence ∀X ∃Y α(X,Y ). We argue that the Π1

1 sentence γψ
is provable in RCA∗

0+BΣ0
n+ψ. Let (M,X ) be a countable model of that theory.

Let X,Z,A ∈ X be such that ¬IΣn(A) holds and X �n
A Z. Since ψ is true in

(M,X ), there is a set Y ∈ X such that (M,X ) |= α(X,Y ). By Lemma 4.5, we
can �-extend (M,X ⊕ Y ⊕ Z ⊕ A) to a structure (M,Y) satisfying ∆0

n-WKL.
Of course, (X ⊕ Y ⊕A)(n−1) is a ∆0

n-set in (M,Y).
The statement X �n

A Z is arithmetical in X,Z,A, so since it was true in
(M,X ), it also holds in all the other second-order universes considered. So,
Lemma 4.8(b) implies that there is a ∆n(Z ⊕A)-set W̃ coding a model (M, W̃)

of WKL∗
0 with (X ⊕ A)(n−1) ∈ W̃. By ∆0

n-WKL (and Proposition 4.4), we
know that (M,∆0

n-Def(M,Y)) is a model of WKL∗
0, and by ¬IΣn(A), we have

(M,∆0
n-Def(M,Y)) |= ¬IΣ0

1 and (M, W̃) |= ¬IΣ0
1.

Thus, by Corollary 2.2, the statement “there exists Y such that α(X,Y ) and
(X ⊕ Y ⊕ A)(n−1) exists as a set”, which is true in (M,∆0

n-Def(M,Y)), must
also be true in (M, W̃). Let Ỹ ∈ W̃ be a witness to the ∃Y quantifier in that
statement. Then in (M,X ⊕ Z ⊕ A), and hence also in (M,X ), it is the case
that Ỹ is a ∆n(Z ⊕A)-set and α(X, Ỹ ) holds. Moreover, X⊕ Ỹ �n

A Z, because
each ∆n(X ⊕ Ỹ ⊕A)-set belongs to W̃ which is an �-model of WKL∗

0 coded by
a ∆n(Z ⊕ A)-set (cf. the proof of the right-to-left direction of Lemma 4.8(b),
whose statement might not apply directly because Ỹ might not be a set in the
sense of (M,X )).

Since X,Z,A were arbitrary such that ¬IΣn(A) holds and X �n
A Z, this

completes the argument that RCA∗
0+BΣ0

n+ψ proves γψ. By Π1
1-conservativity,

also RCA∗
0 +BΣ0

n + ¬IΣ0
n proves γψ. Of course, RCA∗

0 + IΣ0
n proves γψ as well

by the definition of γψ.
In the right-to-left direction, assume that RCA∗

0 + BΣ0
n proves γψ. By a

standard ω-chain argument, to prove Π1
1-conservativity of ψ over RCA∗

0+BΣ0
n+

¬IΣ0
n it is enough to show that for any countable (M,A) |= BΣ0

n + ¬IΣn(A)
and any ∆1(A)-set X, there exists Ỹ ⊆ M such that (M, Ỹ ⊕ A) |= BΣ0

n and
α(X, Ỹ ) holds. By Lemma 4.5, we can extend (M,A) to a model (M,X ) |=
RCA∗

0 + ∆0
n-WKL. By Lemma 4.8(c), we can take some Z ∈ X such that

X �n
A Z. It follows from our assumption that (M,X ) |= γψ, so there is some

Ỹ ⊆ M such that α(X, Ỹ ) holds and X ⊕ Ỹ �n
A Z. Since Z ⊕ A ∈ X , we

have (M, (Z ⊕A)(n−1)) |= BΣ0
1 and thus (M, Ỹ ⊕A) |= BΣ0

n, which is what we
wanted to prove.

We record that the proof of the left-to-right direction of the theorem actually
shows the following.

Corollary 4.11. Let n > 1 and let ψ be a Π1
2 sentence. Then RCA∗

0+BΣ0
n+ψ

proves γnψ, where γnψ is the Π1
1 sentence from Theorem 4.10.
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A discussion of what Theorem 4.10 and Corollary 4.11 say about proving
conservativity over collection principles, mostly in the context of Ramsey’s the-
orem for pairs and two colours, can be found in Section 5.

The following Theorem can be viewed as a generalization of Theorem 3.6.
Whereas Theorem 3.6 says that a Π1

2 sentence ψ is Π1
1-conservative over RCA∗

0+
¬IΣ0

1 exactly if it is provable from WKL, the result below replaces WKL with
∆0
n-WKL and replaces provability of ψ with the provability of a more compli-

cated Π1
2 sentence guaranteeing that the second-order universe can be extended

by solutions to instances of ψ. The sentence says that well-behaved but possibly
non-set solutions to ψ exist, and that they can be found uniformly for instances
of bounded complexity.

Theorem 4.12. Let n > 1 and let ψ be a Π1
2 sentence of the form ∀X ∃Y α(X,Y )

where α is arithmetical. Then ψ is Π1
1-conservative over RCA∗

0 + BΣ0
n + ¬IΣ0

n

if and only if RCA∗
0 +∆0

n-WKL+ ¬IΣ0
n proves the statement:

∀X0 ∃Y0 ∀X6TX0 ∃∆n(Y0)-set Ỹ
(
Ỹ ⊕X0 �n

∅ Y0 ∧ α(X, Ỹ )
)
. (7)

Proof. Let ψ be Π1
2 of the form ∀X ∃Y α(X,Y ).

For the left-to-right direction, assume that ψ is Π1
1-conservative over RCA∗

0+
BΣ0

n + ¬IΣ0
n, so RCA∗

0 + BΣ0
n proves the sentence γψ from Theorem 4.10. We

argue within RCA∗
0 + ∆0

n-WKL + ¬IΣ0
n and fix a set A satisfying ¬IΣn(A).

Consider any set X0. By Lemma 4.8(c), there is Y0 such that X0 �n
X0⊕A Y0.

Naturally, this implies X �n
X0⊕A Y0 for every X 6T X0 as well. We have

¬IΣn(X0 ⊕ A), so we know by γψ that the �n
X0⊕A-basis theorem for ψ holds.

Therefore, for every X 6TX0 there exists a ∆n(X0 ⊕ Y0 ⊕ A)-set Ỹ such that
α(X, Ỹ ) and Ỹ ⊕ X �n

X0⊕A Y0; the latter implies Ỹ ⊕ X0 �n
∅ X0 ⊕ Y0 ⊕ A.

This proves (7) with the outermost ∃ quantifier witnessed by X0 ⊕ Y0 ⊕A.
The proof of the right-to-left direction is just like the one in Theorem 4.10.

The first of the two corollaries below follows directly from either Theo-
rem 4.10 or Theorem 4.12. The second follows from their proofs in the right-to-
left direction.

Corollary 4.13. For each n > 1, the set of Π1
2 sentences which are Π1

1-
conservative over RCA∗

0 +BΣ0
n +¬IΣ0

n is c.e. Thus, it is computably axiomati-
zable.

Except for n = 1, we do not know whether the set in question is finitely
axiomatizable.

Corollary 4.14. Let n > 1 and let ψ be a Π1
2 sentence which is Π1

1-conservative
over RCA∗

0+BΣ0
n+¬IΣ0

n. Any countable topped model of RCA∗
0+BΣ0

n+¬IΣ0
n

can be �-extended to a model of RCA∗
0 +BΣ0

n + ¬IΣ0
n + ψ.

Remark. An analogue of Corollary 4.14 for RCA0+IΣ0
n+¬BΣ0

n+1 fails. One way
of showing this is as follows. Consider the theory in the language of first-order
arithmetic and an additional predicate Tr with axioms consisting of IΣn and
the statement that Tr is a truth class, i.e. satisfies Tarski’s inductive conditions
for a definition of truth for the arithmetical language. It is known that this
theory is conservative over IΣn (this was proved for PA instead of IΣn in [33]
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and generalized to a wider class of theories in [36]; see also [9]). Therefore,
every countable recursively saturated model of IΣn admits a truth class, and
hence, by the results of [42] (see Theorem 6.3 in the present paper), the Σ1

1

sentence “there is a ∆0
n+1-set which is a truth class for the language of first-

order arithmetic” is Π1
1-conservative over RCA0+IΣ0

n+¬BΣ0
n+1. On the other

hand, it is also known that a nonstandard model of IΣn admitting a truth class
has to be recursively saturated (this was originally proved for PA instead of
IΣn in [35]; the new proof in [32], as noted in Remark 1 of that paper, works
already over I∆0 + exp and thus over IΣn for each n > 1). As a consequence, a
nonstandard model of RCA0 + IΣ0

n will not �-extend to a model of the above
Σ1

1 sentence unless it is recursively saturated.

5 Arithmetical consequences of RT2
2

In this section, we study the implications of our results for the general question
of what methods can be used to prove Π1

1-conservativity of Π1
2 sentences over

collection, and for the concrete problem whether Ramsey’s Theorem for pairs
and two colours (RT2

2) is Π1
1-conservative over RCA0 + BΣ0

2. This is a major
open problem in reverse mathematics, originally posed in [4].

Our main technical observation in this area is an upper bound on the quan-
tifier complexity of the first-order part of the Π1

1 sentences one has to consider
to settle the problem about RT2

2 (Corollary 5.2). We give two proofs of the
bound, both of which work for a wider class of statements than just RT2

2. The
first proof is based on Theorem 4.10 and Corollary 4.11. The second actually
avoids the use of Theorem 2.1 and its corollaries altogether, but relies heavily
on the particular syntactic form of RT2

2.

5.1 Implications of the isomorphism theorem
In [4], there are two separate approaches used to prove that every computable
colouring f : [ω]2 → 2 has an infinite homogeneous set H that is low2, which
means that H ′′ ≡T 0′′. The “double jump control” approach is to build H
in such a way as to control H ′′ directly using 0′′. The “single jump control”
approach is to show that if W is any set that has PA-degree relative to 0′ – that
is, to recall, if each 0′-computable infinite 0–1 tree has a W -computable path –
then there is H homogeneous for f such that W computes H ′, and in fact still
has PA-degree relative to H ′. This is essentially the unrelativized version of
the �2

∅-basis theorem for RT2
2, i.e. the special case of the �2

∅-basis theorem for
X = ∅, with Z such that Z ′ ≡T W . Since by the low basis theorem relativized
to 0′ there is a set W of PA-degree relative to 0′ such that W ′ 6T 0′′, single
jump control again gives H that is low2.

A relativized version of the double jump control approach was the one used
to prove Π1

1-conservativity of RT2
2 over RCA0 + IΣ0

2. When IΣ0
2 fails, single

jump control (or the �2
∅-basis theorem) seems more likely to be applicable, and

indeed it was applied in [6] to prove that weakenings of RT2
2 known as CAC and

ADS are Π1
1-conservative over RCA0+BΣ0

2. A priori, however, it is conceivable
that a proof of Π1

1-conservativity of RT2
2 over BΣ0

2 could use neither of the two
approaches.
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What Theorem 4.10 shows is that if a Π1
2 sentence ψ := ∀X∃Y α is Π1

1-
conservative over RCA0+BΣ0

n+¬IΣ0
n, then in principle this has to be provable

by means of the �n
A-basis theorem for ψ, where A is any witness to ¬IΣ0

n. In
the specific case of RT2

2, the relevant n equals 2, and conservativity over IΣ0
2 is

already known from [4]. Thus, if RT2
2 is in fact Π1

1-conservative over BΣ0
2, then

in the currently unknown cases it will always be possible to apply the single
jump control argument (relative to a set A witnessing ¬IΣ0

2).
The results of Section 4 also imply that there is always a bound on the

complexity of Π1
1 sentences we need to study in order to understand if a given

Π1
2 sentence is Π1

1-conservative over BΣ0
n + ¬IΣ0

n. For a Π1
2 sentence ψ, it

follows from Theorem 4.10 and Corollary 4.11 that ψ is Π1
1-conservative over

BΣ0
n + ¬IΣ0

n if and only if RCA∗
0 + BΣ0

n proves the sentence γnψ. If ψ is ∀∃Π0
k,

then γnψ can be written as a ∀Π0
` statement for ` = max(n + 3, k + 2); and, by

Corollary 4.11, it is provable in RCA∗
0 +BΣ0

n. So, we get:

Corollary 5.1. Let n > 1, and let ψ be a ∀∃Π0
k sentence, where k > 2. Then ψ

is Π1
1-conservative over RCA∗

0+BΣ0
n+¬IΣ0

n if and only if it is ∀Π0
` -conservative

over RCA∗
0 +BΣ0

n + ¬IΣ0
n, where ` = max(n+ 3, k + 2).

RT2
2 is a ∀∃Π0

2 sentence, and we have the additional information that it is
Π1

1-conservative over IΣ0
2. This gives:

Corollary 5.2. RCA0 + RT2
2 is Π1

1-conservative over BΣ0
2 if and only if it is

∀Π0
5-conservative over BΣ0

2.

The discussion up to this point has only used the following properties of
RT2

2: it is a Π1
2, and more precisely ∀∃Π0

2, sentence that is Π1
1-conservative over

IΣ0
2 and implies BΣ0

2 in the presence of RCA0. More specific features of RT2
2

are needed for the remark below.
Remark. In the special case of RT2

2, the role of γ2
RT2

2
in the preceding can be

played by the �2
∅-basis theorem for RT2

2. Indeed, we have the following:

(1) RCA0 +RT2
2 proves the �2

∅-basis theorem for RT2
2.

(2) RCA0 + RT2
2 is Π1

1-conservative over BΣ0
2 if and only if BΣ0

2 proves the
�2

∅-basis theorem for RT2
2.

To show (1), let (M,X ) be a countable model of RCA0 +RT2
2, and assume

that X,Z ∈ X are such that X �2
∅ Z and X is a 2-coloring of [M ]2. (Note that

(M,X ) is already a model of ∆0
2-WKL.) By Lemma 4.8(b), there is a ∆2(Z)-

set W̃ coding a model (M, W̃) of WKL∗
0 with X ′ ∈ W̃. Applying Lemma 3.2,

take Ṽ ∈ W such that X ′ �1
∅ Ṽ . If IΣ1(Ṽ ) holds, then Ṽ -primitive recursion

is available in (M,X ). Thus one can directly formalize the single jump control
argument in the form of the proofs of Theorems 6.44 and 6.57 and Corollary 6.58
of [18], which are carried out using solely “d-computable/primitive-recursive
arguments” where d is a fixed degree such that ∅′ � d. This gives a ∆1(Ṽ )-
set Ỹ such that Ỹ is an infinite homogeneous set for X and (X ⊕ Ỹ )′ 6T Ṽ .
Since Ṽ �1

∅ Z
′, we get X ⊕ Ỹ �2

∅ Z. If IΣ1(Ṽ ) fails, then both (M, W̃) and
(M,∆0

2-Def(M,X )) are models of WKL∗
0 +¬IΣ0

1 containing Ṽ , so one may find
Ỹ ∈ W̃ such that Ỹ is an infinite homogeneous set for X and (X ⊕ Ỹ )′ ∈ W̃
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as in the proof of Theorem 4.10. This again implies X ⊕ Ỹ �2
∅ Z. Hence the

�2
∅-basis theorem for RT2

2 holds in (M,X ).
The left-to-right direction of (2) is a direct consequence of (1), and the right-

to-left direction of (2) can be shown as in the proof of the right-to-left direction
of Theorem 4.10.

5.2 Restricted Σ1
1 formulas

Definition 5.3. A restricted Σ1
1, or rΣ1

1, formula has the form ∃Y ξ, where ξ
is Σ0

3. A restricted Π1
2, or rΠ1

2, sentence has the form ∀X (η(x) → ∃Y ξ(X,Y )),
where ∃Y ξ(X,Y ) is rΣ1

1.

As mentioned above, RT2
2 is a ∀∃Π0

2 and thus an rΠ1
2 sentence.

In this subsection, we study the behaviour of rΣ1
1 formulas in WKL∗

0+¬IΣ0
1.

We show that each rΣ1
1 formula is equivalent in WKL∗

0+¬IΣ0
1 to an arithmetical

formula with a relatively clear combinatorial meaning. Lifted to n = 2, this
provides us with a ∀Π0

5 consequence of RT2
2 that leads to an alternative proof of

Corollary 5.2, but differs from the sentence γ2
RT2

2
used in the proof from Section

5.1 by having a meaningful restriction to computable instances.
The investigation of rΣ1

1 formulas also gives us an opportunity to discuss
some additional interesting properties of RCA∗

0 + ¬IΣ0
1. We begin with a vari-

ation on a theme suggested by Theorem 2.1: the possibilities for changing a
model of RCA∗

0 + ¬IΣ0
1 by adding new sets to it are rather limited. Here, we

show that it is not possible to add an unbounded set that is “sparser” than all
those present in the ground model or to add a new bounded Σ0

1-definable set.
The statement about bounded sets is not used elsewhere in the paper but it is
potentially of independent interest.

Lemma 5.4. Let (M,X ) |= RCA∗
0 and let A ∈ X be such that (M,A) |=

¬IΣ1(A). Then:

(a) For every unbounded set S ∈ X there exists an unbounded ∆1(A)-definable
set B such that for every b1, b2 ∈ B with b1 < b2 there exist s1, s2 ∈ S
with b1 6 s1 < s2 6 b2.

(b) Every bounded Σ0
1(M,X )-definable set is Σ1(A)-definable.

The result has a rather obvious generalization to higher n, in which (M,X )
satisfies BΣ0

n + ¬IΣn(A) and the statements (a) and (b) concern ∆0
n- and Σ0

n-
definable sets, respectively.

Proof. Let C be an unbounded ∆1(A)-definable set such that C = {ci : i ∈ I}
for some proper Σ1(A)-definable cut I (e M . Such a set C exists because
¬IΣ1(A) holds.

We first prove (a). Given an unbounded S ∈ X , we find the set B as a
suitable subset of C. Define a sequence 〈ik : k ∈ K〉 cofinal in I by

i0 = 0,

ik+1 = min{i > ik : |S ∩ [cik , ci]| > 2}.

Here K consists of exactly those k ∈ I for which ik exists. K is clearly Σ0
1-

definable, and it is a cut because both S and C are unbounded sets. Let B be
{cik : k ∈ K}.
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Clearly, B is unbounded and there are at least two elements of S between
any two elements of B. It remains to show that B is ∆1(A)-definable. Notice
that both {ik : k ∈ K} and I \ {ik : k ∈ K} are Σ0

1-definable. So, by Theorem
1.2, there is some d ∈M such that Ack(d) ∩ I = {ik : k ∈ K}. Then B = {ci ∈
C : i ∈ Ack(d)}, which shows that B is ∆1(A)-definable because C is.

For (b), we adopt some ideas from the proof of Theorem 2.2 in Chong–
Yang [7]. Let R be a Σ0

1-definable set in (M,X ) that is bounded above by
e ∈ M . Suppose R = {x ∈ M : (M,X ) |= ∃z θ(x, z)}, where θ is a Σ0

0 formula,
possibly with parameters from (M,X ). Use Theorem 1.2 to obtain d ∈M such
that

Ack(d) ∩ (I × [0, e]) = {〈i, x〉 : (M,X ) |= ∃z6ci θ(x, z)}.

Then R = {x ∈M : x 6 e∧∃i∈I 〈i, x〉 ∈ Ack(d)}. So R is Σ1(A)-definable.

In general, an rΣ1
1 formula has the form ∃Y ∃w ∀u∃v δ where δ is bounded.

However, we can assume without loss of generality that the arithmetical part of
the formula is actually ∀u∃v δ, because the initial existential quantifier ∃w can
be merged with the existential set quantifier ∃Y . Using standard tricks, we can
also assume that all quantifiers in δ are bounded by v.

Definition 5.5. Let ϕ(X) be an rΣ1
1 formula of the form ∃Y ∀u∃v δ(X,Y, u, v),

where all quantifiers in δ are bounded by v. We define αϕ(X,Z) to be the
following arithmetical statement:

There is an unbounded ∆1(Z)-definable set W = {wi : i ∈ I}
such that for every i ∈ I there is a finite set y ⊆ [0, wi]
satisfying ∀u6wj ∃v6wj+1 δ(X, y, u, v) for each j < i.

Roughly speaking, αϕ(X,Z) says that some Z-computable set provides a
lower bound for the “rate of convergence” of sequence of finite approximations
to a witness for the ∃Y quantifier in ϕ(X).

Theorem 5.6. Let ϕ(X) be rΣ1
1, and let αϕ(X,Z) be the arithmetical formula

from Definition 5.5. Then:

(a) RCA∗
0 ` ∀X ∀Z (¬IΣ1(Z) → (ϕ(X) → αϕ(X,Z))),

(b) WKL∗
0 ` ∀X ∀Z (αϕ(X,Z) → ϕ(X)).

Proof. Let ϕ(X) be ∃Y ∀u∃v δ(X,Y, u, v) with quantifiers in δ bounded by v.
We first prove (b). Let X,Z be such that αϕ(X,Z) holds, and let the set

W = {wi : i ∈ I} witness the existential quantifier in αϕ(X,Z). Let T be the
tree consisting of finite 0–1 strings τ such that for every i satisfying wi+1 < |τ |,
we have ∀u6wi ∃v6wi+1 δ(X, {x : τ(x) = 1}, u, v). By the choice of W , the
tree T is infinite, so by WKL there is an infinite path Y in T . Clearly, we have
∀u6wi ∃v6wi+1 δ(X,Y, u, v) for each i ∈ I, which implies ϕ(X).

Turning to (a), assume that we have ϕ(X), and let Y witness the existential
set quantifier in ϕ(X). By BΣ0

1, for every number a there is some b such that
∀u6a∃v6b δ(X,Y, u, v). This implies the existence of an unbounded set Ŵ =
{ŵj : j ∈ J} such that for every j ∈ J we have ∀u6 ŵj ∃v6 ŵj+1 δ(X,Y, u, v).

Now let Z be such that ¬IΣ1(Z) holds. By Lemma 5.4(a) with S := Ŵ , there
exists an unbounded ∆1(Z)-definable set W = {wi : i ∈ I} such that for each
i ∈ I there is some j ∈ J with wi 6 ŵj < ŵj+1 6 wi+1. As a consequence, we
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have ∀u6 ŵi ∃v6 ŵi+1 δ(X,Y, u, v) for each i ∈ I. But this means in particular
that W has the property required in αϕ(X,Z).

Corollary 5.7. Let ψ be an rΠ1
2 sentence of the form ∀X (η(x) → ϕ(X)), where

ϕ is rΣ1
1. Then ψ is Π1

1-conservative over RCA∗
0 + ¬IΣ0

1 if and only if RCA∗
0

proves ∀X ∀Z (¬IΣ1(Z) ∧ η(X) → αϕ(X,Z)).

We now consider what can be said about RT2
2 using techniques based on

Lemma 5.4. As in the proof of Corollary 5.2 in Section 5.1, the only specific
features of RT2

2 needed below are that it is an rΠ1
2 sentence, implies BΣ0

2, and
is Π1

1-conservative over RCA0 + IΣ0
2.

Let ζ(f, Z) express the following:

If f : [N]2 → 2, then there is an unbounded ∆2(Z)-set
W̃ = {wi : i ∈ I} such that for every i ∈ I there is a pair of finite
strings 〈σ, τ〉 satisfying:

• |σ| = |τ | = wi,

• {x : σ(x) = 1} is homogeneous for f ,

• for each j < i, there are at least wj elements x 6 wj+1 such
that σ(x) = 1,

• for each j < i and each e 6 wj , if τ(e) = 1, then there is
a computation s 6 wj+1 witnessing eZ⊕σ↓, and if τ(e) = 0,
then eZ⊕σ↑.

Loosely speaking, ζ says that, assuming f is a 2-colouring of pairs, there is a
∆2(Z)-definable infinite tree of finite approximations to an infinite homogeneous
set for f and to the jump of the join of that set with Z. Note that ζ can be
written as a Σ0

4 formula, so the statement ∀f ∀Z (¬IΣ2(Z) → ζ(f, Z)) is ∀Π0
5.

Theorem 5.8. RCA0 +RT2
2 proves ∀f ∀Z (¬IΣ2(Z) → ζ(f, Z)). RCA0 +BΣ0

2

proves that statement if and only if RT2
2 is Π1

1-conservative over BΣ0
2.

Proof. We first show that RCA0 +RT2
2 proves ∀f ∀Z (¬IΣ2(Z) → ζ(f, Z)). Let

(M,X ) |= RCA0 + RT2
2. Let f ∈ X be a 2-colouring of pairs from M , and let

Z ∈ X be such that IΣ2(Z) fails. By RT2
2, there is H ∈ X which is an infinite

homogeneous set for f . Since (M,X ) satisfies BΣ0
2, there is an unbounded ∆0

2-
set S̃ = {sj : j ∈ J} in (M,X ) such that for each j, there are at least sj elements
of H below sj+1, and each machine e 6 sj run with oracle H ⊕ Z either stops
before sj+1 or does not stop at all.

By Lemma 5.4(a) applied to (M,∆0
2-Def(M,X )) with S := S̃ and A := Z ′,

there exists an unbounded ∆2(Z)-definable set W̃ = {wi : i ∈ I} such that
there are at least two elements of S̃ between any two elements of W̃ . We claim
that W̃ witnesses that ζ(f, Z) holds. To see this, consider fixed i ∈ I. Let σ be
the characteristic function of H ∩ [0, wi], and let τ be the characteristic function
of (H ⊕Z)′ ∩ [0, wi]. Then the pair 〈σ, τ〉 has the properties required by ζ(f, Z)
for this i. This shows that (M,X ) |= ∀f ∀Z (¬IΣ2(Z) → ζ(f, Z)).

Thus, we have proved that RCA0+RT2
2 implies ∀f ∀Z (¬IΣ2(Z) → ζ(f, Z)).

Now assume that RCA0+BΣ0
2 proves that statement as well. As in the proof of
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Lemma 4.10, to prove the Π1
1-conservativity of RT2

2 over RCA0 + BΣ0
2 + ¬IΣ0

2,
and thus over RCA0+BΣ0

2, it is enough to show that for any countable (M,A) |=
BΣ0

2 + ¬IΣ0
2 and any ∆1(A)-definable 2-colouring of pairs f , there is H̃ ⊆ M

unbounded homogeneous for f such that (M,A⊕ H̃) still satisfies BΣ0
2.

By [6], there is a model (M,X ) |= RCA0 + BΣ0
2 + COH with A ∈ X . By

our assumption, ζ(f,A) holds in (M,X ). Since COH implies ∆0
2-WKL over

RCA0+BΣ0
2, there is a ∆0

2-set in (M,X ) which is an infinite path in the infinite
∆2-definable 0–1 tree provided by ζ(f,A). Thus, there is an unbounded ∆0

2-set
H̃ in (M,X ) such that H̃ is homogeneous for f and (A ⊕ H̃)′ is a ∆0

2-set in
(M,X ). But this means that (M, (A⊕ H̃)′) |= BΣ0

1, so (M,A⊕ H̃) |= BΣ0
2.

By Theorem 5.8, the statement ∀f ∀Z (¬IΣ2(Z) → ζ(f, Z)) can be used to
give an alternative proof of Corollary 5.2. A possible advantage of that state-
ment over the sentence γRT2

2
is that the restriction of the latter to computable

instances is trivially true in any model of BΣ1 + exp, because in such a model
there can never be computable sets A,Z,X such that X �n

A Z (cf. Lemma
3.8). On the other hand, the Π5 sentence obtained by restricting ζ(f, Z) to
computable colourings f and computable Z (that is, essentially, to situations
where IΣ2 fails) seems more interesting, and it is quite unclear whether BΣ2

proves it.

6 Solution to a problem of Towsner
In [42], Towsner proved that for every n > 1, the set of Π1

2 sentences ψ which
are Π1

1-conservative over RCA0 + IΣ0
n is Π2-complete.

Towsner also asked whether the same holds with IΣ0
n replaced by BΣ0

n. The
question as stated is only really meaningful for n > 2, because RCA0 + BΣ0

1

is simply RCA0. So, in order to generalize the question to n = 1 we take the
liberty of changing the base theory to RCA∗

0.
Question 6.1 (essentially Towsner [42]). For fixed n, is the set

{ψ ∈ Π1
2 : RCA∗

0 +BΣ0
n + ψ is Π1

1-conservative over RCA∗
0 +BΣ0

n}

Π2-complete?
By Theorem 3.6 and Corollary 4.13, the answer to Question 6.1 is “almost

negative”, in that the set of Π1
2 sentences ψ which are Π1

1-conservative over
RCA∗

0 + BΣ0
n + ¬IΣ0

n is c.e. for each n. For n = 1, we even know that this set
is finitely axiomatizable.

Below we show that the original question, without the explicitly added ¬IΣ0
n,

nevertheless has a positive answer.

Theorem 6.2. For every n > 1, the set

{ψ ∈ Π1
2 : RCA∗

0 +BΣ0
n + ψ is Π1

1-conservative over RCA∗
0 +BΣ0

n}

is Π2-complete.

To prove this, we recall an important result that Towsner uses as a lemma
in his argument for the Π2-completeness of Π1

1-conservativity over IΣ0
n.
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Theorem 6.3. [42] If (M,X ) is a countable model of RCA0+IΣ0
n and S̃ ⊆M ,

then there is a family Y ⊇ X of subsets of M such that (M,Y) |= RCA0 + IΣ0
n

and S̃ is ∆0
n+1-definable in (M,Y).

Definition 6.4. For each n > 1, the Σ0
n cardinality scheme, CΣ0

n, asserts that
no Σ0

n formula defines a total injection from N to N with bounded range.

Theorem 6.5. [26] For each n, k > 1, the theory RCA∗
0 +BΣ0

n + ¬IΣ0
n proves

CΣ0
k.

A proof of Theorem 6.5 is given in [26]. As mentioned in [26], a different
proof from the one described there can be obtained by relativizing Kaye’s proof
of the result that any model of BΣ1 + exp + ¬IΣ1 is elementarily equivalent to
an ℵω-like structure [25, Theorem 2.4].

Note that Theorem 6.5 means that an analogue of Theorem 6.3 for BΣ0
n

fails. For example, if (M,X ) is a countable model of RCA∗
0 + BΣ0

n + ¬IΣ0
n

then the graph of any bijection between M and the standard cut ω cannot be
arithmetically definable in any (M,Y) |= BΣ0

n with X ⊆ Y.
In the proof of Theorem 6.2, we use a combination of Theorem 6.3 and

Theorem 6.5.

Proof of Theorem 6.2. Fix n > 1. The set of those Π1
2 sentences ψ that are

Π1
1-conservative over RCA∗

0 +BΣ0
n is clearly Π2, so we only need to prove com-

pleteness. Given a Π2 sentence ϕ := ∀x∃y δ(x, y), define the Σ1
1 sentence ψϕ

as

¬IΣ0
n∨∃Z ∃a

[
(there exists a Σn+1(Z) function f̃ : N ↪→ a) ∧ ∀x6a∃y δ(x, y)

]
.

We claim that ψϕ is Π1
1-conservative over RCA∗

0 + BΣ0
n if and only if ϕ is true

in the standard model of arithmetic ω.
Assume that ϕ is true in ω, and let (M,X ) be a countable nonstandard model

of RCA∗
0+BΣ0

n. If (M,X ) |= ¬IΣ0
n, then also (M,X ) |= ψϕ. On the other hand,

if (M,X ) |= IΣ0
n, by Theorem 6.3 we can �-extend (M,X ) to (M,Y) in which

there is a ∆0
n+1-definable (and thus Σ0

n+1-definable) bijection f̃ between M and
ω. If M |= ϕ, let a be any nonstandard element of M . If M |= ¬ϕ, then, using
IΣ1 in M , let a be the largest element of M such that M |= ∀x6 a ∃y δ(x, y);
in this case, a is necessarily nonstandard. In each case, we see that f̃ is an
injection from M into aM , so (M,Y) |= ψϕ.

We have shown that if ω |= ϕ, then every countable nonstandard model of
RCA∗

0 + BΣ0
n �-extends to a model of RCA∗

0 + BΣ0
n + ψϕ. This is enough to

show that ψϕ is Π1
1-conservative over ϕ.

Now assume that ϕ is false in ω, and let m ∈ ω be such that ω |= ¬∃y δ(m, y).
We argue that the Σ1

1 formula ¬∃y δ(m, y)∧¬CΣ0
n+1 is consistent with RCA∗

0+
BΣ0

n (in fact, with RCA∗
0 + IΣ0

n) but not with RCA∗
0 +BΣ0

n + ψϕ.
LetM be a countable nonstandard model of Th(ω). Then (M,∆1-Def(M)) |=

RCA∗
0 + IΣ0

n + ¬∃y δ(m, y). Use Theorem 6.3 to �-extend (M,∆1-Def(M)) to
(M,Y) |= RCA∗

0 + IΣ0
n +¬CΣ0

n+1. Of course, ¬∃y δ(m, y) still holds in (M,Y),
because it is a purely arithmetical statement. This shows the consistency of
¬∃y δ(m, y) ∧ ¬CΣ0

n+1 with RCA∗
0 +BΣ0

n.
On the other hand, assume that a structure (M,X ) satisfies both RCA∗

0 +
BΣ0

n+ψϕ and ¬∃y δ(m, y)∧¬CΣ0
n+1. By Theorem 6.5, (M,X ) must satisfy IΣ0

n,
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so it must also satisfy the second disjunct of ψϕ. In particular, for any element
a witnessing the existential number quantifier in that disjunct, we have M |=
∀x6 a ∃y δ(x, y). On the other hand, any such a also has to be nonstandard,
which gives a contradiction with M |= ¬∃y δ(m, y).
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